Genetic Evaluations

Genomic enhanced EPDs

Genetic Evaluations for Beef Cattle

- Majority carried out by breed associations
 - Different genetic evaluation providers
 - Different methods to calculate EPDs

Different EPDs reported for each breed

challenging to compare data from different evaluations

- Within a breed EPDs can be directly compared
- Historically "across-breed" EPD adjustment factors, developed by USDA-MARC

Whole Herd Recording

- Whole performance records required on all calves produced by each breeder
- Whether any or all of those calves are registered - the breeder's decision

Collection of phenotypes for development of EPDs for important traits (heifer pregnancy and stayability)

difficult to produce with incomplete data

Remove selection bias from genetic evaluations

Interpreting EPDs

- EPD on one animal no meaning (by themselves)
- Deviations from some preset values (determined individually by each breed)

Expected difference in future progeny performance of one individual compared to another.

EPD ≠ actual performance! **EPD** - do not predict performance!

Interpreting EPDs

Weaning Weight

$$EBV = + 100 lbs$$

$$EPD = +50 lbs$$

$$EBV = +60 lbs$$

$$EPD = +30 lbs$$

Calves expected to differ, on average, by 20 pounds (50 - 30)

Calves expected to differ, on average, by 20 lb

Genomic Testing

- Incorporation of DNA information into genetic evaluations – stepwise evolution since 2000.
- Goal: increase the accuracy of predicting genetic merit (EPD)

For breeders to make the **best use of genomic** data, it needs to be **combined** with traditional sources of information (i.e. phenotypes and pedigrees) into traditional genetic evaluations.

Accuracy of EPDs

- EPDs with low accuracy still the single best tool for selection
- Associated with wide margins of possible change

	Production			
Accuracy	BW	ww	YW	RADG
.05	2.49	11.0	16.2	.082
.10	2.36	10.4	15.3	.078
.15	2.23	9.9	14.5	.074
.20	2.10	9.3	13.6	.069
.25	1.97	8.7	12.8	.065
.30	1.84	8.1	11.9	.061
.35	1.71	7.5	11.1	.056
.40	1.58	7.0	10.2	.052
.45	1.44	6.4	9.4	.048
.50	1.31	5.8	8.5	.043
.55	1.18	5.2	7.7	.039
.60	1.05	4.6	6.8	.035
.65	.92	4.1	6.0	.030
.70	.79	3.5	5.1	.026
.75	.66	2.9	4.3	.022
.80	.53	2.3	3.4	.017
.85	.39	1.7	2.6	.013
.90	.26	1.2	1.7	.009
.95	.13	.6	.9	.004

Incorporation of genomic information

Which traits?

- Traits with routine genetic evaluations obtained from phenotypic and pedigree information.
 - Enhanced accuracy of genetic evaluations
- Traits without routine evaluations.
 - Will allow selection for novel but economically important traits

Traits with current genetic evaluation

- Traits with routine genetic evaluations obtained from phenotypic and pedigree information.
 - Enhanced accuracy of genetic evaluations

Pedigree estimated EPDs, no ultrasound scan data

OLD	CWT	MARB	RE	FAT
EPD	I +15	I +.79	I +.41	I001
Acc	.05	.05	.05	.05

Genomics added

NEW	CWT	MARB	RE	FAT
EPD	+ 18	+ .71	+ .50	+.004
Acc	.30	.38	.35	.28

Traits with current genetic evaluation

Enhanced accuracy of genetic evaluations

- More pronounced in young animals with no recorded progeny – high value for selection of replacement animals.
- The increase in accuracy will depend on:
 - Available records on relatives
 - Heritability of the trait
 - Proportion of variation accounted for by the test

Adding Genomic Information

 Increase in accuracy from integrating genomic information that explains 40% of the genetic variation into EBV

Population specific tests

- Current marker panels (genetic tests) are likely to work best in the populations where discovery occurred
- Predictive power decreases as the target population becomes more genetically distant

Discovery	Target	
Angus	Angus	Closest relationship
Angus	Charolais	
Angus	Bos Indicus	Most distant relationship

 Same erosion will occur over time (over generations if panels are not retrained).

Novel traits

- Genomic information (SNPs)
 - Increase the accuracy of EPDs
 - Add "novel" traits to our suite of available EPD (cattle health – BRD, feed efficiency, healthfulness, nutritional value, disease resistance, thermotolerance, reproductive traits)
- Large resource populations with phenotypes are required for discovery and validation.
- Need breed specific prediction equations.

