

Beef cattle genetics for a hotter world – current research on thermotolerance and meat quality on *B. Indicus* influenced cattle

Raluca Mateescu | Associate Professor of Quantitative Genetics & Genomics

Climatic stress and beef cattle

- Major limiting factor of production efficiency
 - In beef cattle in tropical and subtropics environm.
 - In dairy cattle throughout most of the world
- > 50% cattle in the world maintained in hot and humid environments
 - including ~ 40% of beef cows in US

In response to extreme heat, cows will:

- Regulate internal heat production
 - Modulating basal metabolic rate
 - Changing: feed intake, growth, lactation, activity
- Regulate heat exchange
 - increasing blood flow to the skin
 - increasing evaporative heat loss through sweating & panting

Research Populations

- UF Multibreed Angus x Brahman Herd
 - Summer 2017, 2018
 - 335 cows: from 100% Brahman to 100% Angus

Breed Group		Angus %	Brahman %
1	Angus	100	0
2	75%A	75	25
3	Brangus	62.5	37.5
4	50%A	50	50
5	25%A	25	75
6	Brahman	0	100

- Brangus heifers, Seminole Tribe of Florida
 - Summer 2016, 2017, 2018
 - 2,300 two-year old heifers

Internal Body Temperature

- Vaginal temperature at 5-min intervals for 5 days
- Air temperature and relative humidity recorded

continuously in the pastures

THI = (1.8 * dbt + 32)-- [(0.55-0.0055*rh)*(1.8*dbt-26.8)]

> DS1922L iButton Temperature Logger -Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA

Range: -40°C to +85°C

Thermotolerance measurements

- Vaginal temperature 15 min over 5 days
- Environmental data: temperature, humidity, THI
- Sweating rate
- Coat: color, coat score, hair length & diameter
- Temperament: chute and exit score
- Body condition score
- Skin biopsies: for histology & gene expression
- Weight gain over the summer/fall
- Rump fat and rib fat ultrasound
- Subsequent pregnancy status
- 250K genotypes

Breed response to THI

Phenotypic Plasticicty

 Ability of an individual to alter its phenotype in response to changes in environmental conditions

The ability of one **genotype** to produce more than one phenotype when exposed to different environments.

Each of the colored lines is a "Reaction Norm"

Representing reaction norms in models

Linear reaction norm

 $\{P_{i0}, S\}$: intercept and slope are considered as the evolving traits.

 $P_i(E)$: reaction norm is represented by a flexible function which can evolve like a trait

Breed effect on phenotypic plasticity

Estimate the effect of various % of **Brahman genes** on phenotypic plasticity Use a reaction norm approach via **random regression mixed models**.

Breed effect on phenotypic plasticity

Estimate the effect of various % of **Brahman genes** on phenotypic plasticity Use a reaction norm approach via **random regression mixed models**.

Coat score - breed effect and impact on body temperature

Hair length and diameter

Skin histology

6mm biopsy in formalin => histology

Angus

Brahman

Sweat glands

Source	DF	F Value	Pr > F
Breed	5	13.42	<.0001
SweatGlandArea	1	18.40	<.0001

Genetics of thermotolerance

- Cow of the future: high productivity and resistant to heat stress
- Genomic selection within indicine-influenced breeds
- Gene editing for rapid incorporation into nonadapted breeds.

Reveal the **genetic architecture** of traits defining **thermal tolerance** in *Bos Indicus* influenced cattle.

Meat quality in Bos Indicus influenced cattle

Beef Industry Future Outlook

- Strong "high-quality" branded beef programs
 - Consumers are willing to pay for assured quality
- Important to maintain and increase current consumers brand loyalty (meeting and exceeding quality expectations)
- Important to expand consumer base
- Improving quality critical for beef industry
- Tenderness the most important sensory attribute

Tenderness

Juiciness

Flavor

How do we communicate quality level?

- Currently USDA grading system (marbling and maturity) is used to predict eating quality of beef
 - Limitation in the ability to predict eating quality
 - Limited consumer understanding of the system

Higher quality grade
= more tender and palatable meat

PRIME

USDA

USDA

CHOICE

USDA

USDA

COMRCL

USDA

COMRCL

Tenderness by USDA Quality Grade

UF Angus x Brahman

(N = 1,253)

Tenderness - calpain

- CAPN1-316 = marker for tenderness
- One of the SNPs in the GeneStar Tenderness test
 - GG was 1.10 kg tougher than GC (Pinto et al., 2010)
 - GG was 0.36 kg tougher than GC (Curi et al., 2010)
 - CC is 1.23 kg tougher than CG (UF multibreed pop., Casas et al., 2010)

Effect of known CAST markers

Marker combination for calpastatin

Breed-specific genomic tools

 To meet consumer expectation, the average tenderness needs to be improved and the variation in meat tenderness must be controlled/managed

 To be effective - genomic tools need to be developed in the target populations

Large resource populations with phenotypes are required for discovery and estimation.

Acknowledgements

University of Florida

- Dr. Pete Hansen
- Dr. Mauricio Elzo
- Dr. Dwain Johnson
- Dr. Tracy Scheffler
- Dr. Jason Schaffler
- Dr. Serdal Dikmen
- Danny Driver
- Michelle Driver
- Joel Leal, Heather Hamblen, Sarah Flowers, Kaitlyn Sarlo, Mesfin Gobena, Zaira Estrada
- Eduardo Rodriquez
- Adriana Zolini, William Ortiz, Samantha Eifert, Lauren Peacock, Alexa Chiroussot

Seminole Tribe of Florida

- Alex Johns
- Phillip Clark
- Sheri Holmes
- Mr. Bobby

Financial Support

- UF Agricultural Experim. Station
- UF ANS Hatch Project
- Seminole Tribe of Florida
- Brangus Breeders Association
- Florida Beef Council
- Florida Cattlemen's Association
- USDA-NIFA

